Implementation of the C4.5 Algorithm for Classifying the Causes of Diabetes at the Rejang Lebong District Hospital
Keywords:
Data Mining, Klasifikasi, C4.5, DiabetesAbstract
The Rejang Lebong District General Hospital is located at Jl. Two Lanes, Durian Depun, Merigi District, Rejang Lebong Regency. A hospital is a health service institution that provides complete individual health services, providing inpatient, outpatient and emergency services. In the research, the sample data used was 376 data from patients suffering from diabetes from the Rejang Lebong District Hospital. After the required data was obtained, the attributes required in this research were determined, including: age of the diabetes sufferer, sugar level (mg/dl), total cholesterol (mg/dl). Diabetes is a chronic metabolic disease in which diabetes does not produce sufficient amounts of insulin or the patient's body is unable to utilize insulin properly, causing excessive amounts of glucose in the body. The aim of this research is to analyze data on factors causing diabetes at the Rejang Lebong District Hospital by applying data mining using the C4.5 algorithm method. The C4.5 algorithm is a decision tree classification algorithm that is widely used because it has extraordinary advantages compared to other algorithms. The C4.5 algorithm starts with the process of selecting the attribute with the highest gain, namely the root of the tree, then branching for each value. The C4.5 algorithm is a method for forming a decision tree based on the training data that has been provided. In this study, the dataset used was seventy-six and the attributes used were gender, age, glucose, cholesterol and number of cases with one class determining yes or no. With the results of data processing using the Rapidminer Studio application with a data accuracy value of 100%.
References
Akhiri, S., & Windarto, T. (2019). Data mining: Konsep, teknik, dan aplikasinya. Yogyakarta: Pustaka Pelajar.
Az-Zahra, L. (2023). Klasifikasi Faktor-Faktor Penyebab Penyakit Diabetes Mellitus di RSUD Kota Pariaman Tahun 2022 Menggunakan Algoritma C4. 5” (Doctoral dissertation, Universitas Negeri Padang).
Carudin, C., Marisa, M., Murnawan, M., Reba, F., Koibur, M. E., Thantawi, A. M., ... & Wattimena, F. Y. (2024). Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia.
Ente, D. R., Thamrin, S. A., Arifin, S., Kuswanto, H., & Andreza, A. (2020). Klasifikasi Faktor-Faktor Penyebab Penyakit Diabetes Melitus Di Rumah Sakit Unhas Menggunakan Algoritma C4. 5. Indonesian Journal of Statistics and Its Applications, 4(1), 80-88.
Fadhillah, R. P., Rahma, R., Sepharni, A., Mufidah, R., Sari, B. N., & Pangestu, A. (2022). Klasifikasi Penyakit Diabetes Mellitus Berdasarkan Faktor-Faktor Penyebab Diabetes menggunakan Algoritma C4. 5. Jurnal Ilmiah Penelitian dan Pembelajaran Informatika.
Fadlan, C., Ningsih, S., & Windarto, A. P. (2018). Penerapan Metode Naïve Bayes Dalam Klasifikasi Kelayakan Keluarga Penerima Beras Rastra. JUTIM (Jurnal Teknik Informatika Musirawas), 3(1), 1-8.
Gultom, J. P., & Rikki, A. (2020). Implementasi Data Mining menggunakan Algoritma C-45 pada Data Masyarakat Kecamatan Garoga untuk Menentukan Pola Penerima Beras Raskin. Kumpul. Artik. Karya Ilm. Fak. Ilmu Komput, 2(01), 11-19.
Habibah, N. N., Nazir, A., Iskandar, I., Syafria, F., Oktavia, L., & Syurfi, I. (2023). Pemodelan Klasifikasi Untuk Menentukan Penyakit Diabetes dengan Faktor Penyebab Menggunakan Decision Tree C4. 5 Pada Wanita. Jurnal Sistem Komputer dan Informatika (JSON), 4(4), 654-661.
Larose, D. T., & Larose, C. D. (2020). Discovering knowledge in data: an introduction to data mining. Wiley..
Murlena, D. A., & Apriana, D. (2022). Penerapan Data Mining Untuk Memprediksi Ketersediaan Stok Produk HNI HPAI Menggunakan Algoritma C4. 5. Arcitech: Journal of Computer Science and Artificial Intelligence, 2(1), 19-32.
Murlena, M., & Syahindra, W. (2020). Data Mining Pengolahan Penempatan Library Books Menggunakan Metode Association Rule Dengan Algoritma Apriori. Jurnal INSTEK (Informatika Sains Dan Teknologi), 5(2), 199-208.
Priyanda, R., Agustina, T. S., Ariantini, N. S., Rusmayani, N. G. A. L., Aslindar, D. A., Ningsih, K. P., ... & Wicaksono, D. (2022). Metodologi Penelitian Kuantitatif. Pradina Pustaka.
Ridwan, A. (2022). Penerapan Algoritma C4. 5 Untuk Klasifikasi Penyakit Diabetes Mellitus. Jurnal Bisnis Digital Dan Sistem Informasi, 3(2), 41-48.
Rizal, M., Syahaf, M. Z., Priyambodo, S. R., & Ramdhani, Y. (2023). Optimasi algoritma Naive Bayes Menggunakan Forward Selection untuk klasifikasi penyakit ginjal kronis. Naratif: Jurnal Nasional Riset, Aplikasi dan Teknik Informatika, 5(1), 71-80.
Safitri, M., & Praba, A. D. (2024). PREDIKSI PENYAKIT DIABETES DENGAN MENGGUNAKAN ALGORITMA C4. 5. JIKA (Jurnal Informatika), 8(1), 74-81.
Santoso, M., Al-Akbar, B., Nurjaya, H., Ramadhan, S. A., Rizky, N. A., & Fadillah, A. (2023). Klasifikasi Potensi Penyakit Jantung Menggunakan Algoritma C4. 5. Jurnal INSAN Journal of Information System Management Innovation, 3(2), 96-103.
Sari, Z. D. R., & Jasmir, J. (2024). Penerapan Data Mining Untuk Prediksi Penyakit Diabetes Menggunakan Algoritma C4. 5 Zudyanti Dwi Rahma Sari1, Ja. Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), 4(1), 827-834.
Sholeh, M., Nurnawati, E. K., & Lestari, U. (2023). Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner. JISKA (Jurnal Informatika Sunan Kalijaga), 8(1), 10-21.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anisya Fatmala, Murlena, Nurfitri Andayani (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with JANGTEK JURNAL : Teknologi Informasi dan Ilmu Komputer agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).