Application of the C.45 Data Mining Algorithm to Predict Reading Interest in the Rejang Lebong Regional Library

Authors

  • Wiwik Sukanti Universitas Pat Petulai Author
  • Murlena Universitas Pat Petulai Author
  • Putri Milanda Binamus Universitas Pat Petulai Author
  • Nurfitri Andayani Universitas Pat Petulai Author

Keywords:

Data Mining, C4.5 Algorithm, Regency Regional Library, Prediction of Reading Interest.

Abstract

Data Mining is a computer science method commonly used in the knowledge search process. This method is often found in the fields of machine learning and statistics. The c4.5 algorithm is a classification technique in Machine Learning which is used in the data mining process by forming a decision tree. The data used in this research is primary data originating from the source where the research was conducted. This research was created in order to determine the classification of reading interest and the level of accuracy using the C4.5 algorithm data mining method to produce a model in the form of a decision tree to predict the types of books that are of interest based on the type of book, gender and occupation of the reader at the Rejang Lebong Regional Library. From the Decision Tree that is formed, the main factors that influence interest reading, namely work and followed by gender and depending on the type of book. From the results of the Entropy and gain calculations, it was found that the most popular type of book was the Encyclopedia and Reference book type. From the results of the gain and Entropy calculations, the final decision tree and the final validation accuracy results were found. with a value of 44.48%

References

Anggriani, S. D., Muhammad Syahril, S. E., Kom, M., &ItaMariami, S. E. (2022). Data Mining Algoritma C4. 5 UntukMenganalisaPendudukPenerima Program KeluargaHarapan (PKH)(StudiKasus: KelurahanTualang V). Jurnal Cyber Tech, 1(6).

Badriah, S., Nugroho, M. F. E., Sanjaya, N., Rismawati, I., Sari, B. N., &Rozikin, C. (2021).KlasifikasiAlgoritma C4. 5 dalamMenentukanPenerimaBantuan Covid-19:(StudiKasus: Desa di Karawang). JurnalInformatikaPolinema, 7(3), 23-28.

Fitriani, E. (2020). PerbandinganAlgoritma C4. 5 Dan Naïve Bayes UntukMenentukanKelayakanPenerimaBantuan Program KeluargaHarapan. SISTEMASI: JurnalSistemInformasi, 9(1), 103-115.

Murlena, DiwiApriana(2022).Penerapan Data Mining UntukMemprediksiKetersediaanStokProduk HNI HPAI MenggunakanAlgoritma C4.5.Arcitech: Journal of Computer Science and Artificial Intellegence, Volume 2 No. 1 (January - June 2022), pp. 19 – 32

Saragih, I. A., Firmansyah, A. U., &Rohminatin, R. (2021).PenerapanMetode C4. 5 UntukPenentuanKelayakanPenerima Program KeluargaHarapan. JUTSI (JurnalTeknologidanSistemInformasi), 1(3), 275-280.

Sari, R. A. PREDIKSI CALON PENERIMA BANTUAN PROGRAM KELUARGA HARAPAN (PKH) MENGGUNAKAN ALGORITMA C4. 5 (STUDI KASUS: KECAMATAN BANGKO KABUPATEN ROKAN HILIR).

Sari, R. A. PREDIKSI CALON PENERIMA BANTUAN PROGRAM KELUARGA HARAPAN (PKH) MENGGUNAKAN ALGORITMA C4. 5 (STUDI KASUS: KECAMATAN BANGKO KABUPATEN ROKAN HILIR).

Tanjung, M. A., Poningsih, P., &Qurniawan, H. (2021).AnalisaKelayakanPenerima Program KeluargaHarapan (PKH) MenggunakanAlgoritma C4. 5. Jurasik (JurnalRisetSistemInformasidanTeknikInformatika), 6(1), 217-225.

Downloads

Published

2024-10-30

Issue

Section

Articles

How to Cite

Application of the C.45 Data Mining Algorithm to Predict Reading Interest in the Rejang Lebong Regional Library. (2024). JANGTEK JURNAL : Teknologi Informasi Dan Ilmu Komputer, 1(2), 49-60. https://journal-upprl.ac.id/index.php/jangtek/article/view/86

Most read articles by the same author(s)

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.